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Synthesis of silica-bound amylose by phosphorolytic elongation
of immobilised maltoheptaosyl hydrazides
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D-40225 Düsseldorf, Germany

Accepted 2 July 2002

Abstract—Maltoheptaoside-alkoxysilane anchor molecules were synthesised by fusing aliphatic �-Si(OEt3) hydrazide linkers with
maltoheptaose. After immobilisation of the primers on porous silica, support-bound amylose was synthesised by phosphorolytic
synthesis. The hydrazone linkage as a pre-formed cleavage site allowed removal and subsequent characterisation of immobilised
amylose, which showed a broad molecular weight distribution. Under HPLC conditions, amylose assumed a non-helical
conformation, making surface interactions and not complexation the primary separation mechanism. © 2002 Elsevier Science Ltd.
All rights reserved.

1. Introduction

Amylose is a linear polysaccharide composed of �-1–4
linked glucose moieties, which, together with the highly
branched amylopectin forms the polysaccharide compo-
nent of starch. Native starch,1–3 derivatives of amylose
and cellulose,4–6 as well as cyclodextrins7 have been
used for chromatographic enantioseparation. Amylose
can adopt a helical conformation which is able to form
inclusion complexes with various guest compounds.8–12

Similar complexation mechanisms are known for
cyclodextrins,13 which have long been used for chiral
recognition and encapsulation of compounds.14–16 Car-
bamate derivatives of polysaccharides, adsorbed on or
covalently linked to solid supports are frequently used
for chiral separation.17,18 Silica-bound amylose carba-
mate was prepared by enzymatic synthesis followed by
immobilisation and derivatisation.19 However, inclusion
complexes of amylose have not yet been exploited for
chromatography. Here, synthesis and immobilisation of
oligosaccharide primers on porous silica,20 followed by
solid-phase enzymatic chain elongation, is reported.
The synthetic route ensured that silica-bound amylose
was attached to the support via its reducing end, allow-

ing for maximal conformational flexibility of the immo-
bilised polysaccharide chain. Immobilised amylose
could be removed via breaking of a pre-formed cleav-
age site, allowing analysis of the synthetic process.
Properties of the new phases in high-pressure liquid
chromatography (HPLC) were tested.

2. Results and discussion

Bifunctional maltooligosaccharide-silane linkers were
synthesised from �-unsaturated carboxylic acids by
conversion to the corresponding hydrazides (Fig. 1).21

Figure 1. Synthesis of �-unsaturated hydrazide linkers.
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Figure 2. Synthesis and immobilisation of maltooligosaccha-
ride linkers.

2.1. Solid-phase amylose synthesis

Enzymatic synthesis of amylose using potato phospho-
rylase (EC 2.4.1.1) and glucose-1-phosphate allows gen-
eration of amylose polymers with a narrow molecular
weight distribution,28,29 a method which can also be
used for the generation of amylose-containing copoly-
mers by heterogeneous phosphorolytic synthesis.30,31

Similar to anionic polymerisation, a desired molecular
weight of the polymer can be defined via the ratio of
starter to monomer.32,28 Since the enzyme requires a
maltooligosaccharide starter of at least 4 glucose units
in length (Glc4), immobilised maltoheptaose was indeed
an efficient starter for polymer synthesis. Enzymatic
chain elongation of immobilised maltoheptaose primers
afforded silica-bound amylose (Fig. 3A).32

Variation of reaction time and amount of enzyme used
for synthesis gave an optimal duration of enzymatic
synthesis of 15 min, using 0.29 units33 of potato phos-
phorylase per �mol of immobilised maltoheptaose
starter. The total amount of immobilised polysaccha-
ride after phosphorolytic synthesis was ca. 6%, irrespec-
tive of the spacer length (Fig. 3B).34 The relative
increase in amylose content of the modified silica sup-
port was higher for the -(CH2)11- spacer, indicating that
although fewer immobilised primers were present on
the surface, these were better accessible for enzymatic
synthesis. Variation of the ratio of monomer (Glc-1-P)
to starter (immobilised maltoheptaose) revealed a satu-
ration behaviour, reaching a maximum at a theoretical
degree of polymerisation of ca. 100 for -(CH2)6-, and
ca. 250 for the -(CH2)11- spacer (Fig. 3B). This is
consistent with a more efficient amylose synthesis from
maltoheptaose molecules that are bound to the support
via the longer spacer. The saturation behaviour also
indicates that an equilibrium of amylose synthesis and
removal from the support by a disproportionation reac-
tion of the enzyme32 was being reached, regardless of
the amount of available monomer.

2.2. Characterisation of immobilised amylose

The hydrazide linker had been introduced as a pre-
formed cleavage site to monitor the progress of solid
phase amylose synthesis. Under the conditions of syn-
thesis, coupling and deprotection, the hydrazide bond
was stable, but synthesised amylose could be cleaved
from the support by shaking the material in 0.2 M
citrate buffer at pH 4.0 at 60°C for 4 h (Fig. 3A). The
supernatant was directly tested by iodine complexation
and HPLC (Waters Ultrahydrogel 250, 0.2 M citrate
buffer pH 6.0, 0.5 ml/min, room temperature). Syn-
thetic amylose standards10,35 were used for calibration.
Solid-phase synthesised amylose was characterised by a
broad molecular weight distribution (Fig. 3C). Reduced
accessibility of immobilised primers, leading to varia-
tions in the rate of chain elongation on different sites
on the support, and beginning disproportionation may
account for the observed chain length distribution.
High molecular weight of support-generated amylose,
and the presence of unreacted primer indicated that
only few of the immobilised primer molecules were
utilised by the enzyme.

�-Cyclodextrin (�-CD) was cleaved by acid hydrolysis
to give linear maltoheptaose,22 which could be coupled
to the �-unsaturated hydrazides (Fig. 2A).23 OH-
groups were protected with trimethylsilyl chloride
(TMS-Cl) and hexamethyl disilazane,24 and the double
bond hydrosilylated25 using H-Si(OEt3) and bis-
cyclopentadienyl platinum chloride.26 These primers
were coupled to porous silica, TMS was removed by
treatment with dilute acid in methanol/water to give
silica-bonded primers for phosphorolytic amylose syn-
thesis (Fig. 2A).27

The (CH2)3-spacer resulted in inefficient amylose syn-
thesis (not shown), so only the (CH2)6-, and (CH2)11-
spacers were further tested. Among these, (CH2)6-
resulted in a more efficient immobilisation of the malto-
heptaose anchor group, giving a maximum spacer den-
sity of 72 �mol/g, compared to 22 �mol/g for the
11-C-spacer (Fig. 2B).
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2.3. Chromatography36

Amylose-modified silica was suspended in water/0.2%
I2/KI solution added to induce formation of the helical
amylose–iodine inclusion complex prior to column
packing. Water/methanol (95:5, v/v) was used as
medium for packing and HPLC. Under these condi-
tions, complex formation ability of amylose was fully
preserved, while swelling of the material during column

Table 1. Chromatographic properties of modified silica
phases

S 250-(CH2)11amyloseS 250 (base mat.)Column material

Amylose (wt%) 6.2–
2100Theor. plates 2700

Capacity factorCompound

Fenchone 1.732.16
1.94 2.10D-Menthol

2.181.94L-Menthol
1.391.512-Hexanone
1.091.02Phenol

Figure 3. Generation and analysis of support-bound amylose.

packing was minimised. The observed differences in the
elution sequence for complexands of starch and
cyclodextrin between base material and amylose-
modified silica indicated that bound amylose dominated
the separation process (Table 1). In the case of D- and
L-menthol, enantioseparation was observed. The chiral
separation factor of �=1.04, however, was not suffi-
cient for baseline separation. Note also that known
complexands of amylose were not retarded as strongly
as expected. Apparently, no inclusion complexes were
formed between analytes and immobilised amylose.
When amylose phases were removed from the columns
and probed with iodine solution, the typical blue colour
only became visible after 1–2 min, compared to instan-
taneous staining with materials that had not been used
in HPLC.

Thus, the conditions of HPLC column packing and use
(>25 bar) induced a conformational change of the
amylose, abolishing the low-density, helical V-confor-
mation. Retardation, therefore, was most likely due to
interactions on the carbohydrate surface and not com-
plex formation between analyte and amylose helices.
Amylose-grafted chromatography materials should thus
be useful in low and medium pressure chromatographic
applications, where helical inclusion should be the pre-
dominant separation mechanism.
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1986, 98, 808.

21. Purgett, M. D.; Xie, S.; Bansleben, D. A.; Vogl, O. J.
Pol. Sci. A 1988, 26, 665. Melting points (uncorrected):
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